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RANK ADDITIVITY AND MATRIX POLYNOMIALS

Let Ay,..., A be m X n matrices and let A = > A;. Then we say that the A;’s

are rank additive to A whenever
rank(Ay) + - -+ + rank(Ax) = rank(A).

The earliest consideration of rank additivity may well be by Cochran (1934), who studied
the distribution of quadratic forms in normal fandom variables. More recently, Anderson
and Styan(1982), in a largely expository paper, presented various theorems on rank ad-
ditivity, with particular emphasis on square matrices which are idempotent (A? = A),
tripotent (A% = A) or r-potent (A" = A). Sec also Khatri (1980), Takemura (1980), and
Styan (1982). |

In this paper we generalize some of those thcorems to matrices that salisfy a

general matrix polynomial equation P(A) = 0.

We hegin by considering some relationships between lincarly independent vector
spaces, direct sums and rank additivity. There are several definitions of linear independence

of veclor spaces currently in use. We briefly review thesc and set up our notation.

DEFINITION 1. Let X be a (finite-dimensional) vector space and Uy,...,Us be

subspaces of X. Uy,...,Ux are linearly independent if

: k
& €U;, i=1..,k D =0 = 2,=0 i=1,..,k
i=1
It is easy to sce that U,,...,Uy are linearly independent if and only if any set
of nonzero vectors @; € U; , ¢ = 1,...,k are linearly independent. We now list several

equivalent conditions in a scquence of lemmas.

LEMMA 1. The vector spaces Uy,...,Uy are linearly independent if and only if every

vector in U = Uy + ++- + Uy has a unique representation in the form E:-;l g, 2; € Us

Proof: let 0= =y +++- + o ,2; €U; ,1=1,...,k. Note that 0 € U; for all ¢ and

0= 0+--- + 0. Hence by the uniqueness of the representation =; = 0,1 = 1,...,k.
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Therefore Uy, .. ., Uy are independent. Conversely suppose that Uy, ..., Uy are independent.
Let Zi.;l x; = Zf___l x0 , z;, %9 € U;. Then 0= Ele x; —x? and z; — =¥ € U;. Hence

z;—a2l=0,i=1,...,k. &

Rao and Yanai (1979) use the characterization in Lemma 1 as the definition of

“disjointness” of the subspaces. Another definition is given by Jacobson (1953, p.28).

LEMMA 2. The vector spaces Uy,...,Uy are linearly independent if and only if

U,‘ﬂ(U1+"' +U;_y+ Uiy + - +Uk)={0} fori=1,...,k.

Proof: Immediate from Jacobson (1953, Th.10, p.29) and Lemma 1. H
LEMMA 3. The vector spaces Uy,...,Uy are linearly independent if and only if

k
dim(U; + -+ +U) = Y _ dim Us.

=1
Proof: Immediate from Jacobson (1953, Th.11, p.29). &

If Uy,...,Uy arc linearly independent subspaces and U = Uy + -+ + Uk then we
say that U is the direct sum of the subspaces and denote this by

U=U® - QU =D U

Consider the column space (range) C(A;) of the m X n; matrices A;, ¢ =1,...,k.
Let £ = Zle n;.

LEMMA 4. C(A), » = 1, ..., k are linearly independent if and only if

k
rank(Ay, Ag, ..., Ar) = E rank(A;).

i=1

Proof: Notice that rank(A4;) = dim C(A;) and rank(Ay, ..., Ag)=dim(C(A1) + -+ +

C(Ak)). Hence the lemma follows from Lemma 3.
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Consider the km X m partitioned matrix K,, = (Im,...,I») and the km X ¢
block diagonal matrix
Ay
D= : : N
Ag
Then Lemma 4 can be written in the form rank(K/,D) = rank(D), c¢f. Anderson and
Styan (1982, p.8).

Now let the matrices Ay,..., Ax all have the same number of columns n. Then

with A = 3% A; we have

=1

LEMMA 5. C(A) = YF_. C(A;) if and only if rank(Ay, ... , Ag) = rank(A).

1=1

Proof: Since C(A)C oF_| C(A;) always holds, C(A) = 3F C(A;) il and only if dim(C(A))

i=1 i=1
= dim(zi;l C(Ai)). Now dim(C(A))=rank(A) and dim(}] C(A;))=rank(A4, ..., Ax).
| ' ‘

Lemma 5 can be written in the form rank(K?, D) = rank(K/, DK,,).

We now give the following characterization of rank additivity.

LEMMA 6. The matrices Ay,..., Ar are rank additive to A if and only if C(A) =
C(A1) D -+ D C(Ax).

Proof: By Lemma 4 and Lemma 5. the column space C(A) = C(A1) P --- @ C(Ax) if and
only if rank(K/, D) = rank(b) aI.1d ra.n'k(K’mD) = rank(K, DK,). But rank(K'! DK,)

< rénk(Kme)S rank(D). Hence rank(K’ D) = rank(D) and rank(K, D) = rank(K’,DK,)
il and only if rank(K’, DX,) = rank(D). § '

From now on we restrict A, A; to be n X n square matrices.

THEOREM 1. Let Ay,..., Ay be square matrices, not necessarily symmetric, and let
A=} A;. Let P(z) be a polynomial in the scalar x with P(0) = q. Consider the following
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statements:
(a) PA)=0, i1=1,...,k,
(b) A;A; =0 forallizj,
(c) P(A)=0, |
(d) D rank(A;) = rank(A).

If g =0 then

(1) (b), (c), (d) = (a).
If g % 0 then P(A) = O implies that A is nonsingular and

@)  (b),(c), (d) = P(A;)=q(I-A"'A) and A;P(A)=0, i=1,...,k

Proof: Suppose ¢ = 0. Then (b) implies that 0 = P(A) = Ef___l P(A;). Therefore for

every = we obtain 0 =3 P(A;)x. Now P(A,)x € C(A;). Hence by linear independence of
the C(A;)’s we have P(A;)x = O for all =. Hence (a) holds.

Now let q 5% 0, and let the polynomial R(z) = :vP(:i). Then R{A) — 0 and from
the previous case (g = 0) we obtain R(A;)=A;P(A;)=0,: = 1,...,k If P(A) = 0
then P(\) == 0 for any characteristic root X of A. Therefore ¢ 7% 0 implies that 0 is not a

characteristic root-of A,.or A is nonsingular. Then

AP(A;) = A[P(A;) —ql] +¢A
= A[P(A;) —ql] + qA
= Q(A - A‘:))

from which (2) follows at once. &
When the polynomial
P(z) = Py(z) = 2% ~ «,

then (1) may be strengthened to

~

(c)2s (d) & (a), (b),
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where (c), is (c) with P = Pj. This is Cochran’s Theorem (cf. Anderson and Styan, 1982,
Th.1.1). When
P(z) = Ps(z) = 2% — =,
then (1) may be strengthend
(3) ()3 (d), (e) & (a), (b),
where
() AAim= AA, i=1,....k

cf. Anderson and Styan (1982, Th.3.1). Here (c), is (c¢) with P = P;. Takemura (1980,
Th.3.2) showed that (3) still holds with (c); replaced by (c), for P(z) = P,(z) = =" — =.

Notice that the polynomials P, P3 and P, have no multiple root; we obtain
further results when the polynomial P has no multiple root. First we show that there
exists a “nullity-additivity” relation underlying a matrix polynomial with no multiple root.

Anderson and Styan (1982, p.5) showed that

(4) V(A — A?) = v[A(I— A)] = v(A) + V(I - A),
where
(5) v(A) = n — rank(A)

is the (column) nullity of the n X n matrix A.
Equation (4) is a special case of equality in Sylvester’s law of nullity:
Y(AB) < v(A)+ v(B),
where A is m X n and B is n X ¢, say. Then |
©)  /(A4B)=u(4) +(B)
if and only if
(7 N(A)CC(B),

where N(-) denotes null space, cf. Satake (1975, p.124). See also Marsaglia and Styan
(1974, p.275). Using this fact we obtain



THEOREM 2. Let A be a square matriz and let ,,...,2q be distinct scalars. Then
d d

(®) | AT[(A-=Dl =Y vA - =),

=1 =1

- Proof: Let w € N(A —z,I). Then Au = z1u and since 17, (z1 — =:) 7% 0 we see that

d d d
w=T[(A~z:du/ [ (o1 - =) € C([[ (A )]
i=2 =2 i=2
and so
d
U] (A= 5] = v(d - D) + v{ [ (4 - =),
g=1 =2

since (6)(7). Repeating this argument d — 2 times establishes (8). @
Theorem 2 yields the following corollaries:
COROLLARY 1. Let the polynomial P have degree d and distinct roots xi,...,24,
and let the matriz A be n X n. Then
d
v[P(A)] = V[H —z D)} = Z v(A - z1).
=1 1=1 ‘

Moreover,

-—04:)2 —:c, =n

o Z rank({A — z;I) = (d — 1)n,

=1

(9)

and the set {z1,...,24} contains all distinct characteristic roots of A.

Proof: Equation (9) follows from P(A) = 0 & v[P(A)] = n and from (5). If P(A) = 0
then any characteristic root of A is a root of P. Hence {z1,...,%4} contains all distinct

characteristic roots of A. H



COROLLARY 2. Let w = exp[2ni/(r—1)], where the integer r > 2 and let the matriz
A ben Xn. Then

r—2
(10) VA~ A") = y(A) + v(I—- A) + ) v(wI— A),
s=1
and
r—2
A=A & v(A)+y(I-A)+ ) v(wI-A)=n
g==1
r—2 '
& rank(A) + rank(I'— A) + Z rank{w®l — A) = (r — 1)n.
g==1

When r = 2 the summation in Corollary 2 disappear and (10) reduces to (4).

When r = 3, equation (10) becomes
v(A— A3%) = v(A) + v(I - A) + v(I+ A),
cf. Anderson and Styan (1982, p.13).

Another consequence of P having no multiple root is the diagonability of the

matrix A which satisfies P(A) = 0.

LEMMA 7. The square matriz A i3 diagonable if and only if there exists a polynomial
P with no multiple root such that P(A) = 0.

A matrix A is said to be diagonable il there exists a nonsingular F such that
F~1AFis diagonal, and then the minimal polynomial has no multiple root (cf. e.g., Mirsky,
1955, Th.10.2.5, p.297). Th;: polynomial P in Lemma 7 must be a multiple of (or actually)
the minimal polynomial. Lemma 7 shows that an idempotent, tripotent or r-potent matrix

A is diagonable.

We may prove Lemma 7 using the algebraic and geometric multiplicities of the
(disti‘nct) characteristic roots \y,..., A, of A. Let amj , j=1,...,p denote the algebraic
multiplicity of \;, namely the multiplicity of ); as é root of the characteristic cquétion. Let
gm; ,j=1,...,p, denote the geometric multiplicity of \;, namely the nullity v(A — X\;I).
Note that am; > gm; , j = 1,...,p. (See e.g. Mirsky 1955, p.294). The characteristic

root A; is said to be regular if am; = gm;.
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LEMMA 8. The square matriz A is diagonable if and only if all its characteristic roots

are regular.

Proof: Sce e.g. Mirsky (1955, Th.10.2.3). B

Proof of Lemma 7. Let P(z) = (¢ —21)(z —%2) - - (¢ — z4), where d= deg P, and zy,...,34

are the dislinet roots of P’(x) == 0 and suppose P(A) = 0. Then
0= P(A) = (A — 2 I)(A — zoI)- - - (A — z4l).

Define gm} = gm; il z; = \; for some j and gmj = 0 otherwise. Then v(A — zI)==gm]
for all 7. [Note that is @; is not a characteristic root of A then A—z;Iis nonsingular and

V(A — z;I)=0==gm}.] Then by Theorem 2

d d
n == Zu(A—cc,-I) = Zg'm;‘

i==1 i=1
P P
< E gm; < E am; = n.
=t j=1

Hence the inequalitics above collapse and we have am; = gm; , 1 =1,...,p. By Lemma 8

A is diagonable.

"To go the other way let A be diagonable. Then we may write
A= FAF' = Fdiag(\i,.. -, s Nay oo, X)) F L,
where \q,...,\, are distinct roots ol A. Let P(z) = (& — X1} -+ (& — Xp). Then
P(A) = FPA)F' = F(A—X\1)--- (A= \I)F' = FOF™' = 0,
Fand the resull is established. @

The two matrices A, B are said to be simultaneously diagonable il A, B can be
diagonalized by the same nonsingular matix F. We then have the lollowing exlension of

Theorem |I.



THEOREM 3. Let Ay,..., Ax be n X n matrices, not necessarily symmetric, and let
A = > A; be diagonable. Suppose that

(b) A;A; =0 foralli 5 j,
(d) Z rank(A;) = rank(A).

Then A, A,,..., A, are all simultaneously diagonable and for some nonsingular F

(11) FVAF = diag(M\j1), - -+, Njm)s
and
(12) F_]A,L'F == d]ag(o, ey 0, Xj(rl+...+n__l +1)rre >‘j(r1+---+r.')! 07 U ] 0)7

where r; = rank(A;), j(Z) € {L,...,p}, i=1,...,n.

Proof: Let P(z) be a polynomial with no multiple root and such that P(A) = 0. If
P(0) = 0 then by Theorem 1 P(A;) = 0 and hence A; is diagonable, 1 = 1,..., k. If
P(0) # 0 then 0 is not a rool of P(z) = 0. Hence (z) = zP(x) still has no multiple
root. By Theorem 1 again I(A;) = O and hence A; is diagonable, 2 = 1,...,k. In any
event Ay,..., Ag arc diagonable. T'rom (b) it follows that A, Ay, ..., Ag are simultancously
diagonable (by F). Sec ec.g., Mirsky (1955, Th.10.6.3., p.318) or Takemura (1980, Th.4.3).
Let F1AF=A, F'A,F= A;. Then A;A; = Ofor all 254 j, A= Y A, , rank(A) =
> rank(4;) imply that by rearranging the coordinates (if necessary) we can obtain (11) and

(12). B
We extend Theorem 3 with:

THEOREM 4. Let Ay,..., A ben Xn Matrices, not necessarily symmetric, and let
A= Z’; A;. Suppose that

(b) AA; =0 foralli j.

Then the set of nonzero characteristic roots of A coincides with the set of all the nonzero

characteristic roots of all the A;, 1 = 1,...,k. Furthermore the nonzero characteristic
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root \ of A is-regular if and only if X is a regular nonzero characteristic root of each A,

i=1,...,k

If in addition
k
(d) Z rank(A;) = rank(A),
1

then the characteristic root 0 of A is regular if and only if 0 is a regular characteristic root

of each A;, v =1,...,k. Equivalently

rank(A?) = rank(A) & rank(A?) = rank(A;), i=1,...,k.

Mikeliinen and Styan (1976, Lemma 2) have shown thal the zero characleristic
root of a malrix A is regular if and only if rank(A*) = rank(A). Such a matrix A is said to
have index 1, ¢f. Ben-Isracl and Greville (1974, p.169). Marsaglia and Styan (1974, Th.15,
p.286) proved that it Ay,..., Ag all have index 1 then (b)=(d). IFrom Lemma 7 and 8 it

follows that when the polynomial P in Theorem 1 has no multiple root and 1°(0) = 0 then

(a), (b) = (¢), ().

Proof of Theorem 4. lict A have rank 7, and let A; have rank »;, ¢ = 1,...,k. Let
Xi,...,\e be the nonzero characteristic roots of A. Let my; be the algebraic mulliplicity
and g;; the geomelric multiplicity of \; as a characteristic root of A;, so that, of. e.g.,

Mirsky (1955, Th.7.6.1, p.214),
(13) n>mi;>g5; 20 i=1...,k j=1..°%L

Then X; is a regular characteristic root of A; whenever my; = g5, [Notice that g;; = 0 &
my; = 0; we will then speak of \; as a regular charactcrktic rool of A; cven Lhough A;
doces not have A; as a rool.] Let myg; be the algebraic multiplicily and go; the geometric
multiplicity of X\; as a characieristic root of A. Let myg be the algebraic multiplicity and
gio the geometric multiplicity of 0 as a characteristic root of A;, 1= 1,...,k. Then

4

mm:n——m,-.:n——E mgj, gio =n—r;, =n—rank(4;), 71=1,...,k.
i=1
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Hencen > r; > m;. > 0; i1=1,...,k Let mgg be the algebraic multiplicity and let ggp

be the geometric multiplicity of 0 as a characteristic root of .A. Then
4
Moo =N —Mp. = N — Zmoj,
j=1
goo = n —r = n — rank(A).
Hencen 2> r 2> my. 2 0.
_ Let A; = B;C,, 1=1,...,k, befull rank decompositions, with B; and C; both
n X r; of rank r;. Then A = Z'f A, = E’f B;C. = BC', where
B=(By,...,By) and C=(Cy,...,Ck)

are both n X E’f 75

Now suppose that (b) holds. Then C.B; = O for all { £ j and so C'B =
diag(C) By, ..., CBy) is a block diagonal matrix.

Let am;(A) denote the algebraic mulliplicity and gm;(A) denote the geometric
multiplicity of X\; as a characterixtic root of A. Then since the matrices FG and GF have
the same nonzero characteristic roots (cf. e.g., Mirsky, 1955, Th.7.2.3., p.200), we may

write for j =1,...,¢
mg; = am;(A) = am;(BC') = am,;(C'B Z am;(C:B Z am;(B; C" Z mij,
o =1 . =1 1.—1

while

4 k 2 k-
o= Y ey = 303 g = 3

i=1 i=1j=1 i=1
so that n — amo(:4) = Y ¥[n — amo(A)].

We now use the result that the matrices FiG —I'and GF'— I have the same nullity,
cf. Ouellette (1981, p.246). Then for each j =1,...,¢
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ng = gmj(A) = V(A b )\JI) = V(BC’ -_ )\31) = V(O’B -— >\JI)
k k
= Y u(CiB; — \I,) =) v(BiCi — \;I)

=1 =1

k- k
=) Y= ML) = 3 o

Hence when (b) holds all the nonzero characteristic roots of the A;, 1 =1,..., k, must be
characteristic roots of A, and all the nonzero characterisitc roots of A must be characteristic

roots of A; for some 1.

Furthermore, since g;; < my; from (13) we obtain

=1 =1

k k .
go; = D 0i; < D my=mo;; j=1,...,4
and so for each 7 = 1,...,¢
go;j =mo; & gij =my; 1=1,...,k.

Thus when (b) holds, X\; is a regular nonzero characteristic root of A if and only if Aj is

also a regular characteristic root of each 4;, i=1,...,k.
Now suppose that both (b) and (d) hold. Then substitution in

k

k
n—gmo(A) =r <Y 1= [n—gmo(A;)]
1 L

yields n — gmo(A) = 3¥[n — gmo(A,)] and so

k k k
gmg(A) =n — Z[n —gmo(Al)] < n— Z[n —amp(A;)] =n — Em.-. = n — my..
1 1 1

Hence 0 is a regular characteristic root of A if and only if 0 is a regular characteristic root

of A;,,foralli =1,...,k.
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